RBF KERNEL OPTIMIZATION METHOD WITH PARTICLE SWARM OPTIMIZATION ON SVM USING THE ANALYSIS OF INPUT DATA’S MOVEMENT
DOI:
https://doi.org/10.21609/jiki.v10i1.410Keywords:
parameter, Particle Swarm Optimization, RBF kernel, sigma, Support Vector MachineAbstract
SVM (Support Vector Machine) with RBF (Radial Basis Function) kernel is a frequently used classification method because usually it provides an accurate results. The focus about most SVM optimization research is the optimization of the the input data, whereas the parameter of the kernel function (RBF), the sigma, which is used in SVM also has the potential to improve the performance of SVM when optimized. In this research, we proposed a new method of RBF kernel optimization with Particle Swarm Optimization (PSO) on SVM using the analysis of input data’s movement. This method performed the optimization of the weight of the input data and RBF kernel’s parameter at once based on the analysis of the movement of the input data which was separated from the process of determining the margin on SVM. The steps of this method were the parameter initialization, optimal particle search, kernel’s parameter computation, and classification with SVM. In the optimal particle’s search, the cost of each particle was computed using RBF function. The value of kernel’s parameter was computed based on the particles’ movement in PSO. Experimental result on Breast Cancer Wisconsin (Original) dataset showed that this RBF kernel optimization method could improve the accuracy of SVM significantly. This method of RBF kernel optimization had a lower complexity compared to another SVM optimization methods that resulted in a faster running time.Downloads
Published
2017-02-28
How to Cite
Indraswari, R., & Arifin, A. Z. (2017). RBF KERNEL OPTIMIZATION METHOD WITH PARTICLE SWARM OPTIMIZATION ON SVM USING THE ANALYSIS OF INPUT DATA’S MOVEMENT. Jurnal Ilmu Komputer Dan Informasi, 10(1), 36–42. https://doi.org/10.21609/jiki.v10i1.410
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).