LEARNING WORD RELATEDNESS OVER TIME FOR TEMPORAL RANKING
DOI:
https://doi.org/10.21609/jiki.v12i2.745Keywords:
Information Retrieval, temporal ranking, Dual Embedding Space Model, temporal word embeddingsAbstract
Queries and ranking with temporal aspects gain significant attention in field of Information Retrieval. While searching for articles published over time, the relevant documents usually occur in certain temporal patterns. Given a query that is implicitly time sensitive, we develop a temporal ranking using the important times of query by drawing from the distribution of query trend relatedness over time. We also combine the model with Dual Embedding Space Model (DESM) in the temporal model according to document timestamp. We apply our model using three temporal word embeddings algorithms to learn relatedness of words from news archive in Bahasa Indonesia: (1) QT-W2V-Rank using Word2Vec (2) QT-OW2V-Rank using OrthoTrans-Word2Vec (3) QT-DBE-Rank using Dynamic Bernoulli Embeddings. The highest score was achieved with static word embeddings learned separately over time, called QT-W2V-Rank, which is 66% in average precision and 68% in early precision. Furthermore, studies of different characteristics of temporal topics showed that QT-W2V-Rank is also more effective in capturing temporal patterns such as spikes, periodicity, and seasonality than the baselines.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).