GESTURE RECOGNITION FOR PENCAK SILAT TAPAK SUCI REAL-TIME ANIMATION

Widi Hastomo

Abstract


The main target in this research is a design of a virtual martial arts training system in real-time and as a tool in learning martial arts independently using genetic algorithm methods and dynamic time warping. In this paper, it is still in the initial stages, which is focused on taking data sets of martial arts warriors using 3D animation and the Kinect sensor cameras, there are 2 warriors x 8 moves x 596 cases/gesture = 9,536 cases. Gesture Recognition Studies are usually distinguished: body gesture and hand and arm gesture, head and face gesture, and, all three can be studied simultaneously in martial arts pencak silat, using martial arts stance detection with scoring methods. Silat movement data is recorded in the form of oni files using the OpenNI ™ (OFW) framework and BVH (Bio Vision Hierarchical) files as well as plug-in support software on Mocap devices. Responsiveness is a measure of time responding to interruptions, and is critical because the system must be able to meet the demand.


Full Text:

PDF


DOI: https://doi.org/10.21609/jiki.v13i2.855

Refbacks

  • There are currently no refbacks.


Copyright © Jurnal Ilmu Komputer dan Informasi. Faculty of Computer Science Universitas Indonesia.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.